SUSY QCD Part II

Flat Directions (Classical Moduli Space) 6.1

Recall

$$D^{a} = g(\phi^{*in}(T^{a})_{n}^{m}\phi_{mi} - \overline{\phi}^{in}(T^{a})_{n}^{m}\overline{\phi}_{mi}^{*})$$
(6.1)

and the potential is:

$$V = \frac{1}{2}D^a D^a \ . \tag{6.2}$$

Define

$$D_m^n \equiv \langle \phi^{*in} \phi_{mi} \rangle \tag{6.3}$$

$$D_m^n \equiv \langle \phi^{*in} \phi_{mi} \rangle$$

$$\overline{D}_m^n = \langle \overline{\phi}^{in} \overline{\phi}_{mi}^* \rangle$$
(6.3)

 D_m^n and \overline{D}_m^n are $N \times N$ positive semi-definite Hermitian matrices of rank F. In a vacuum state we must have:

$$D^a = T_n^{am} (D_m^n - \overline{D}_m^n) = 0 (6.5)$$

Since T^a is a complete basis for traceless matrices, we must have

$$D_m^n - \overline{D}_m^n = \alpha I \tag{6.6}$$

 \mathcal{D}_m^n can be diagonalized by an SU(N) gauge transformation

$$U^{\dagger}DU \tag{6.7}$$

There will be at least N-F zero eigenvalues, while the rest are positive semi-definite.

$$D = \begin{pmatrix} v_1^2 & & & & & & \\ & v_2^2 & & & & & \\ & & \ddots & & & & \\ & & & v_F^2 & & & \\ & & & & 0 & & \\ & & & & \ddots & \\ & & & & 0 \end{pmatrix}$$
 (6.8)

where $v_i^2 \geq 0$. In this basis \overline{D}_m^n must also be diagonal, and it must also have N-F zero eigenvalues. This tells us that $\alpha=0$, and hence that

$$\overline{D}_m^n = D_m^n \tag{6.9}$$

 D_m^n and \overline{D}_m^n are invariant under flavor transformations since

$$\phi_{mi} \rightarrow \phi_{mi} V_j^i$$
 (6.10)

$$D_m^n \rightarrow V_i^{*j} \langle \phi^{*in} \rangle \langle \phi_{mi} \rangle V_j^i$$
 (6.11)

$$\rightarrow \langle \phi^{*jn} \phi_{mj} \rangle = D_m^n \tag{6.12}$$

Thus, up to a flavor transformation we can write

$$\langle \overline{\phi}^* \rangle = \langle \phi \rangle = \begin{pmatrix} v_1 & & \\ & \ddots & \\ & & v_F \\ 0 & \dots & 0 \\ \vdots & & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

$$(6.13)$$

So we see that the D-term potential has flat directions eminating from the zero energy vacuum at $\phi = 0$, $\overline{\phi} = 0$, or in other words there is a space of degenerate vacua. This space is referred to as a *moduli space* since there a some massless fields (moduli fields) associated with it. As we change the values of the vevs we move between physically different vacua with different particle spectra.

At a generic point in the moduli space the SU(N) gauge symmetry is broken to SU(N-F).

6.2 SuperHiggs Mechanism?

Consider the simple case when $v_1 = v$ and $v_i = 0$, for i > 1. Then the gauge symmetry breaks from SU(N) to SU(N-1) and the non-Abelian flavor symmetry breaks from $SU(F) \times SU(F)$ to $SU(F-1) \times SU(F-1)$. The number of broken gauge generators is $N^2 - 1 - ((N-1)^2 - 1) = 2(N-1) + 1$. A convenient basis of gauge generators for describing this broken gauge theory is given by $G^A = X^0, X_1^m, X_2^m, T^a$ where $A = 1, \ldots, N^2 - 1, m = 1, \ldots, N-1$, and $a = 1, \ldots, (N-1)^2 - 1$. The X's are the broken generators

while the T's are the unbroken SU(N-1) generators. The X's are analogues of the Pauli matrices:

$$X^{0} = \frac{1}{\sqrt{2(N^{2} - N)}} \begin{pmatrix} N - 1 & & & \\ & -1 & & \\ & & -1 & & \\ & & & \ddots & \\ & & & & -1 \end{pmatrix}$$
(6.14)

$$X_1^m = \frac{1}{2} \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ 0 & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ 1 & & & & \mathbf{0} & & \\ 0 & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ \end{pmatrix}$$
(6.15)

$$X_{2}^{m} = \frac{1}{2} \begin{pmatrix} 0 & \dots & 0 & i & 0 & \dots & 0 \\ 0 & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ -i & & & & & & \\ 0 & & & & & & \\ \vdots & & & & & & \\ 0 & & & & & & \\ \end{pmatrix}$$
(6.16)

Where only the (1,m+1) and (m+1,1) components of X_1^m and X_2^m are non-zero. We can also make raising and lowering operators:

$$X^{+m} = \frac{1}{\sqrt{2}}(X_1^m - iX_2^m) \tag{6.17}$$

$$X^{+m} = \frac{1}{\sqrt{2}}(X_1^m + iX_2^m) \tag{6.18}$$

$$X^{+m} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ & & & \mathbf{0} & & & \end{pmatrix}$$
 (6.19)

$$X^{-m} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -i & \mathbf{0} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$(6.20)$$

We can then write the product of two generators (without a contraction of row and column indices) as:

$$G^{A}G^{A} = X^{0}X^{0} + X^{+m}X^{-m} + X^{-m}X^{+m} + T^{a}T^{a}$$
(6.21)

Rewriting

$$\phi \to \langle \phi \rangle + \phi \tag{6.22}$$

we have

$$\sum_{A} G^{A} \langle \phi \rangle = X^{0} \langle \phi \rangle + X^{-m} \langle phi \rangle \tag{6.23}$$

$$\langle \phi \rangle \sum_{A} G^{A} = \langle \phi \rangle X^{0} + \langle \phi \rangle X^{+m}$$
 (6.24)

We can label the components of the gluino field as

$$G^{A}\lambda^{A} = X^{0}\Lambda^{0} + X^{+m}\Lambda^{+m} + X^{-m}\Lambda^{-m} + T^{a}\lambda^{a}$$
 (6.25)

and the quark field as

$$Q = \begin{pmatrix} \omega^0 & Q_i'' \\ \omega^m & Q'mi \end{pmatrix}$$
 (6.26)

$$\overline{Q} = \begin{pmatrix} \overline{\omega}^0 & \overline{\omega}^m \\ \overline{Q}_i'' & \overline{Q}'im \end{pmatrix}$$
 (6.27)

where Q' is a matrix with N-1 rows and F-1 columns.

We can then write the fermion mass terms generated by the Yukawa interactions as

$$\mathcal{L}_{\text{F mass}} = -\sqrt{2}g \left[\left(\langle \phi^* \rangle X^0 \Lambda^0 + \langle \phi^* \rangle X^{+m} \Lambda^{+m} \right) Q \right]$$
 (6.28)

$$-\overline{Q}\left(X^{0}\Lambda^{0}\langle\overline{\phi}^{*}+\rangle X^{-m}\Lambda^{-m}\langle\overline{\phi}^{*}+\rangle\right)+h.c.\right] \ \ (6.29)$$

$$= -gv \left[\sqrt{\frac{N-1}{N}} \left(\omega^0 \Lambda^0 - \overline{\omega}^0 \Lambda^0 \right) \right]$$
 (6.30)

$$+\omega^m \Lambda^{+m} - \overline{\omega}^m \Lambda^{-m} + h.c.$$
 (6.31)

So we have a Dirac fermion $(\Lambda^0, \frac{1}{\sqrt{2}}(\omega^0 - \overline{\omega}^0))$ with mass $gv\sqrt{\frac{2(N-1)}{N}}$, two Dirac fermions (Λ^{+m}, ω^m) , $(\Lambda^{-m}, -\overline{\omega}^m)$) with mass gv, and massless Weyl fermions $Q', \overline{Q}', Q'', \overline{Q}''$, and $\frac{1}{\sqrt{2}}(\omega^0 + \overline{\omega}^0)$).

$$\phi = \begin{pmatrix} h & \phi_i'' \\ H^m & \phi_{mi}' \end{pmatrix} \tag{6.32}$$

$$\overline{\phi} = \begin{pmatrix} \overline{h} & \overline{H}^m \\ \overline{\phi}_i'' & \overline{\phi}_{im}' \end{pmatrix} \tag{6.33}$$

where ϕ' is a matrix with N-1 rows and F-1 columns.

$$V_{\text{mass}} = \frac{g^2}{2} \left[\langle \phi^* \rangle (X^0 + X^{+m}) \phi + \phi^* (X^0 + X^{-m}) \langle \phi \rangle \right]$$
 (6.34)

$$-\langle \overline{\phi} \rangle (X^0 + X^{+m}) \overline{\phi}^* - \overline{\phi} (X^0 + X^{-m}) \langle \overline{\phi}^* \rangle \Big]$$
 (6.35)

$$\frac{g^2}{2} \left[\frac{(N-1)^2}{2(N^2 - N)} \left(h + h^* - (\overline{h}^* + \overline{h})^2 \right) \right]$$
 (6.36)

$$+(H^m - \overline{H}^{*m})(H^{*m} - \overline{H}^m)$$

$$(6.37)$$

Choose a new basis for the scalar field that diagonalizes the mass matrix:

$$H^{+m} = \frac{1}{\sqrt{2}}(H^m - \overline{H}^{*m}) \tag{6.38}$$

$$H^{-m} = \frac{1}{\sqrt{2}}(H^{*m} - \overline{H}^m) \tag{6.39}$$

$$\pi^{+m} = \frac{1}{\sqrt{2}}(H^m + \overline{H}^{*m}) \tag{6.40}$$

$$\pi^{-m} = \frac{1}{\sqrt{2}} (H^{*m} + \overline{H}^m) \tag{6.41}$$

$$h^0 = \operatorname{Re}(h - \overline{h}) \tag{6.42}$$

$$\pi^0 = \operatorname{Im}(h - \overline{h}) \tag{6.43}$$

$$\Omega = \frac{1}{\sqrt{2}}(h + \overline{h}) \tag{6.44}$$

(6.45)

So

$$V_{\text{mass}} = g^2 v^2 \left[\frac{N-1}{N} (h^0)^2 + H^{+m} H^{-m} \right]$$
 (6.46)

Thus we have a real scalar h^0 with mass $gv\sqrt{2(N-1)/N}$ a complex scalar H^{+m} (and it's conjugate H^{-m}) with mass gv and a massless complex scalar Ω . The π 's will form the longitudinal components of the massive gauge bosons. They can be removed by going to Unitary gauge (i.e. by performing a gauge transformation $\exp(iX \cdot \pi)$).

We can write the gauge fields as:

$$G^{B}A_{\mu}^{B} = X^{0}W_{\mu}^{0} + X^{+m}W_{\mu}^{+m} + X^{-m}W_{\mu}^{-m} + T^{a}A_{\mu}^{a}$$
 (6.47)

$$\mathcal{L}_{A^{2}\phi^{2}} = g^{2}A_{\mu}^{A}A_{\nu}^{B}g^{\mu\nu}\langle\phi^{*}\rangle G^{A}G^{B}\langle\phi\rangle
= g^{2}g^{\mu\nu}\langle\phi^{*}\rangle(X^{0}W_{\mu}^{0}X^{0}W_{\nu}^{0} + X^{+m}W_{\mu}^{+m}X^{-m}W_{\nu}^{-m} + X^{-m}W_{\mu}^{-m}X^{+m}W_{\nu}^{+m})\langle\phi\rangle
= g^{2}v^{2}g^{\mu\nu}\left(\frac{N-1}{2N}W_{\mu}^{0}W_{\nu}^{0} + \frac{1}{2}W_{\mu}^{+m}W_{\nu}^{-m}\right)$$
(6.48)

Since there is an identical term arising from $\mathcal{L}_{A^2\bar{\phi}^2}$ we have a gauge boson W_{μ}^0 with mass $gv\sqrt{2(N-1)/N}$, a pair of gauge bosons W_{μ}^{+m} and W_{μ}^{-m} with mass gv, and the massless gauge bosons A_{μ}^a of SU(N-1). As expected all the particles fall into supermultiplets.

To summarize: for v = 0 we have the massless fields:

	SU(N)	SU(F)	SU(F)
\overline{Q}			1
\overline{Q}		1	

for $v \neq 0$ we have massive states:

	SU(N-1)	SU(F-1)	SU(F-1)
W^0	1	1	1
W		1	1
\overline{W}		1	1

Where the massive vector supermultiplet $W^0=(W^0_\mu,h^0,\Lambda^0,\frac{1}{\sqrt{2}}(\omega^0-\overline{\omega}^0))$ has mass

$$m_{W^0} = gv\sqrt{\frac{2(N-1)}{N}} (6.49)$$

and the massive vector supermultiplets $W^{+m}=(W_\mu^{+m},H^{+m},\Lambda^{+m},\omega^m)$ and $W^{-m}=(W_\mu^{-m},H^{-m},\Lambda^{-m},\overline{\omega}^m)$ have mass

$$m_{W^{\pm}} = gv. \tag{6.50}$$

We also have the massless states:

	SU(N-1)	SU(F-1)	SU(F-1)
Q'			1
$\frac{\mathfrak{T}}{Q}'$	□	1	
$\frac{Q''}{\overline{Q}''}$	1		1
\overline{Q}''	1	1	
S	1	1	1

Where the singlet chiral supermultiplet S is $(\frac{1}{\sqrt{2}}(h+\overline{h}), \frac{1}{\sqrt{2}}(\omega^0+\overline{\omega}^0))$. Including the gluons (and gluinos) we have for both cases $(v=0 \text{ and } v\neq 0)$ $2(N^2-1)+4FN$ boson degrees of freedom (and of course the same number of fermion degrees of freedom).

References

- [1] "Lectures on supersymmetric gauge theories and electric-magnetic duality," by K. Intriligator and N. Seiberg, hep-th/9509066.
- [2] P. Fayet, "Supergauge Invariant Extension Of The Higgs Mechanism And A Model For The Electron And Its Neutrino," Nucl. Phys. **B90**(1975) 104.
- [3] H.E. Haber and G.L. Kane, Model, Appendix B" Phys. Rept. **117** (1985) 75.